-1-
-2-
n = ±√(φ/2), 0 for Reals
add ±√((1-√5)/2) for Complex
n^2 + n^4 =n^6
n^2=0 or 1+n^2=n^4
n^4- n^2 -1=0
n^2= (1±√5)/2
n = ±√(φ/2), 0 for Reals
add ±√((1-√5)/2) for Complex
-------------------------
n²+n⁴=n⁶
=> n⁶-n⁴-n²=0
=> n²(n⁴-n²-1)=0
Either n²=0 so n=0. Solution.
Or n⁴-n²-1=0; let n²=x
x²-x-1=0
=> x=(1+√5)/2, (1-√5)/2;=n²
=> n = √{(1+√5)/2}, -√{(1+√5)/2}, √{(1-√5)/2}, -√{(1-√5)/2}. Solution.
-3-
-4-